基于改进蚁狮优化器的光伏电池模型参数辨识,Energy Conversion and Management
Parameter identification of photovoltaic cell model based on improved ant lion optimizer
For photovoltaic cell model, the accurate identification of parameters has a great impact on the prediction of power and the maximum power point tracking, so it always has a high demand on accuracy. Many intelligent algorithms can identify the parameters of the model, but there are the situations that the convergence speed is slow, influenced by the initial value, and easy to premature convergence. Ant lion optimizer (ALO) is a novel intelligent algorithm proposed in recent years, and it also has the problems mentioned above. The improved ant lion optimizer (IALO) arranges the initial positions of individuals by chaotic sequence to enhance the uniformity and ergodicity of population; The idea of particle swarm algorithm is introduced in the position updating of individuals, and the position of individuals are calculated based on the current best individuals and the global best individual to enhance the local and global searching capability; The dynamic contraction region in which the best individual is considered is used to decrease the search range and shorten the time of optimization efficiently. Comparing with particle swarm algorithm, bat algorithm and ant lion algorithm in the simulation, IALO algorithm is better than the other algorithm for four standard test functions. IALO algorithm is also used to identify the parameter of photovoltaic cell. The results show that, for Iph the average of IALO algorithm is 5.180, the average of ALO algorithm is 5.179, and the average of PSO algorithm is 5.052. For Io the average of IALO algorithm is 1.02, the average of ALO algorithm is 0.97, and the average of PSO algorithm is 0.87. For A the average of IALO algorithm is 48.0, the average of ALO algorithm is 37.4, and the average of PSO algorithm is 29.7. For Rs the average of IALO algorithm is 0.146, the average of ALO algorithm is 0.140, and the average of PSO algorithm is 0.142. For Rsh the average of IALO algorithm is 298.6, the average of ALO algorithm is 221.5, and the average of PSO algorithm is 188.9. So IALO algorithm is the best.
与基于改进蚁狮优化器的光伏电池模型参数辨识,Energy Conversion and Management 相关的其他内容
-
轰动性的可爱!日本原宿Kawaii文化教祖-增田Sebastian
如果你喜欢ACG次元界,cosplay,日本街头色彩缤纷的潮文化,即使不懂日文的人,也都知道"Kawaii(卡哇伊)"这词的的意思就是「可爱」,除此之外,凡举能吸引目光的漂亮的人和事物,日本人都经常会...
-
中方访法后不到1月,马克龙找上德国,联合“反美”
时隔24年,法国总统再次访问德国。很多人难以想象,两国明明挨在一起,每年在各种会议上,双方领导人也没少见面,怎么会这么多年,法国总统都没有对德国,国事访问过?而且,马克龙这次一访问,就搞了个大新闻出来...
-
个人学习计划书
个人学习计划书推荐度:大学生个人学习计划书推荐度:护士个人进修学习计划书推荐度:相关推荐个人学习计划书范文(通用9篇)日子如同白驹过隙,不经意间,相信大家对即将到来的工作生活满心期待吧!现在就让我们制...
-
How to Store and Label Homemade Tinctures for Freshness
Paul|MoreArticlesHereBio?PaulBasilvs.ThaiBasil:Flavor,Uses,andKeyDifferencesPaulWaystoKeepDeerandRab...
-
中山大学夺冠、柯洁带队清华,看皇室战争如何连接电竞与高校
GameLook报道/12月21日,皇室战争名校邀请赛在广州珠影影视基地落下帷幕。清华大学、复旦大学、中山大学以及西安交通大学四所名校的皇室战争大神们齐聚一堂,向着最高荣誉发起冲击。经过一天的激烈角逐...
-
2025重庆市志愿填报规则:重庆高考志愿是平行志愿还是顺序志愿?附志愿设置
重庆市自2021年起实施高考综合改革,成为了“3+1+2”新高考省份,并采用“专业(类)+院校”志愿填报方式,投档模式主要为平行志愿和顺序志愿,接下来小编将为大家详细讲解重庆市高考志愿填报规则,并附上...
-
2025新教材七年级下册地理期中试题(PDF版,含答案)
资源简介2024一2025学年度第二学期阶段性质量检测七年级地理试题选择题(共20分)一、本大题包括20个小题,每小题1分,共20分。在每小题所列的四个选项中,只有一项最符合题目要求。120北冰洋学习...
-
2025年人教部编版四年级语文下册写字表注音并组词、词语表(全) .pdf
原创力文档从2008开站以来,已有超数十万网友上传了数亿文档,原创力文档定位于“知识资源平台、知识服务平台”;本网站为内容提供方提供“创作营收”解决方案:你只需要简单地上传及管理你的内容,而后续的宣传...
-
2025高考作文题目出炉!新高考一卷“老舍”难出深度,抽象?难写?
今天是2025年高考第一天,第一科考试语文结束后,作文题就直接上了热搜!看完作文题目,很多网友纷纷表示:看不懂全国一卷作文,太难了!先来看看全国一卷的作文题目吧:看完作文题目,书城君不得不承认网友们说...
-
化学工程与工艺(国家级一流本科专业建设点)
(1)专业发展沿革化学工程与工艺专业是我校最早建立的专业之一,是全国最具石油化工特色的化工专业,始建于1950年建校时的人造石油专业,1958年设为石油炼制本科专业招生,1983年更名为石油加工专业,...